Using XGBoost for time-series analysis can be considered as an advance approach of time series analysis . this approach also helps in improving our results and speed of modelling. XGBoost is an efficient technique for implementing gradient boosting.
Read moreWhich type of neural networks can be used for time series data?
Convolutional Neural Networks or CNNs are a type of neural network that was designed to efficiently handle image data. The ability of CNNs to learn and automatically extract features from raw input data can be applied to time series forecasting problems.
Read moreCan Ann be used for time series?
Artificial neural networks (ANNs) are flexible computing frameworks and universal approximators that can be applied to a wide range of time series forecasting problems with a high degree of accuracy .
Read moreWhat is the best neural network for time series prediction?
Conclusions. Recurrent Neural Networks are the most popular Deep Learning technique for Time Series Forecasting since they allow to make reliable predictions on time series in many different problems. The main problem with RNNs is that they suffer from the vanishing gradient problem when applied to long sequences.
Read more