Which algorithm is better than LSTM?

LSTM is better . ANN assigns a weight matrix to the current input and then produces an output, completely forgetting the previous input. Hence information flows only once through ANN and previous information is not retained. Hence ANN do not perform well where time context is required i.e Time series data.

Read more

What is LSTM best for?

LSTM networks are well-suited to classifying, processing and making predictions based on time series data , since there can be lags of unknown duration between important events in a time series. LSTMs were developed to deal with the vanishing gradient problem that can be encountered when training traditional RNNs.

Read more

How does LSTM work example?

The trickiest part is feeding the inputs in the correct format and sequence. In this example, the LSTM feeds on a sequence of 3 integers (eg 1×3 vector of int). In the training process, at each step, 3 symbols are retrieved from the training data. These 3 symbols are converted to integers to form the input vector.

Read more